Skip to main content

Choice Probabilities

Role of Choice Probabilities​

  • Essential in modeling discrete choices.
  • Cannot predict choices definitively from representative utility alone because of the unobserved component.
  • Choice probabilities crucial in discrete choice models.

General Formula for Choice Probabilities​

Calculation​

  • Probability of choosing alternative ii: PniP_{ni}.
  • Considers the cumulative distribution of unobserved utility components.

Formula​

  • The probability that decision maker nn chooses alternative ii is:
Pni=Pr(Uni>Unj,βˆ€jβ‰ i)=Pr(Vni+Ο΅ni>Vnj+Ο΅nj,βˆ€jβ‰ i)=Pr(Ο΅njβˆ’Ο΅ni<Vniβˆ’Vnj,βˆ€jβ‰ i)=∫ϡ1(Ο΅njβˆ’Ο΅ni<Vniβˆ’Vnjβˆ€jβ‰ i)f(Ο΅n)dΟ΅n\begin{align*} P_{ni} &= Pr(U_{ni} > U_{nj}, \forall j \neq i)\\ &=Pr(V_{ni} + \epsilon_{ni} > V_{nj} + \epsilon_{nj} , \forall j \neq i)\\ &=Pr(\epsilon_{nj} - \epsilon_{ni} < V_{ni} - V_{nj}, \forall j \neq i)\\ &=\int_{\epsilon} \mathbb{1}(\epsilon_{nj} - \epsilon_{ni} < V_{ni} - V_{nj} \quad \forall j \neq i) f(\epsilon_n) d\epsilon_n \end{align*}

Note: Above integral is multi-dimensional integral and f(Ο΅n)f(\epsilon_n) is joint density function of Ο΅n1,Ο΅n2,...,Ο΅nj\epsilon_{n1},\epsilon_{n2},...,\epsilon_{nj}. We have to make assumptions about this joint density function.

Example from statistics​

Let,

fX,Y(x,y)={6eβˆ’(2x+3y),x,yβ‰₯00,otherwisethen,Β P(X>Y)=∫0∞∫y∞6eβˆ’(2x+3y) dx dy=∫0∞3eβˆ’3y dy=35.\begin{align*} f_{X,Y}(x,y) &= \begin{cases} 6e^{-(2x+3y)}, & x, y \geq 0 \\ 0, & \text{otherwise} \end{cases}\\\\ \text{then, } P(X > Y) &= \int_{0}^{\infty} \int_{y}^{\infty} 6e^{-(2x+3y)} \, dx \, dy \\ &= \int_{0}^{\infty} 3e^{-3y} \, dy \\ &= \frac{3}{5}. \end{align*}

Choice Probabilities Example​

Scenario:

  • A person decides whether to take a car (c)(c) or a bus (b)(b) to work.
  • Observable attributes: time (T)(T) and cost (M)(M) for each mode of transport.

Representative Utility Specification:

  • Car: Vnc=Ξ²0c+Ξ²1Tnc+Ξ²2MncV_{nc} = \beta_{0c} + \beta_1T_{nc} + \beta_2M_{nc}.
  • Bus: Vnb=Ξ²0b+Ξ²1Tnb+Ξ²2MnbV_{nb} = \beta_{0b} + \beta_1T_{nb} + \beta_2M_{nb}.

Assuming Known Coefficients:

  • If Ξ²\beta coefficients are known, VncV_{nc} and VnbV_{nb} can be calculated.
  • However, unobserved factors (Ο΅nc(\epsilon_{nc} and Ο΅nb)\epsilon_{nb}) also affect the decision.

Choice Probability Calculation:

  • For driving:
    • Pnc=Pr(Ο΅nbβˆ’Ο΅nc<Vncβˆ’Vnb)P_{nc} = Pr(\epsilon_{nb} - \epsilon_{nc} < V_{nc} - V_{nb}).
    • Expanded: Pnc=Pr(Ο΅nbβˆ’Ο΅nc<(Ξ²0cβˆ’Ξ²0b)+Ξ²1(Tncβˆ’Tnb)+Ξ²2(Mncβˆ’Mnb))P_{nc} = Pr(\epsilon_{nb} - \epsilon_{nc} < (\beta_{0c} - \beta_{0b}) + \beta_1(T_{nc} - T_{nb}) + \beta_2(M_{nc} - M_{nb})).

Using Choice Probabilities To Estimate Parameters​

Objective:

  • Estimating structural parameters of the model that describe the decision maker’s preferences and behavior.

Role of Choice Probabilities:

  • Choice probabilities assist in fitting the model to observed data.
  • A good fit is indicated when the choice probability for the selected alternative is close to 1, and for all other alternatives, it is close to 0.

Fitting the Model:

  • Finding structural parameters that align the model's choice probabilities with observed choices.

Methodology:

  • The approach depends on the assumptions made about the distribution of the unobserved utility component (Ο΅)(\epsilon).